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Image Classification with DIGITS

NVIDIA Deep Learning Institute
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DEEP LEARNING INSTITUTE
DLI Mission

Helping people solve challenging 
problems using AI and deep learning.

• Developers, data scientists and 
engineers

• Self-driving cars, healthcare and 
robotics

• Training, optimizing, and deploying 
deep neural networks
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Agenda

• Intro to Deep Learning

• Training vs. Programming

• Train our first neural network - Lab

• How networks “learn”

• Increasing performance - Lab

• Next Steps
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WHAT IS DEEP LEARNING?



ACCOMPLISHING COMPLEX GOALS



SWEEPING ACROSS INDUSTRIES
Internet Services Medicine Media & Entertainment Security & Defense Autonomous Machines

➢ Cancer cell detection

➢ Diabetic grading

➢ Drug discovery

➢ Pedestrian detection

➢ Lane tracking

➢ Recognize traffic signs

➢ Face recognition

➢ Video surveillance

➢ Cyber security

➢ Video captioning

➢ Content based search

➢ Real time translation

➢ Image/Video classification

➢ Speech recognition

➢ Natural language processing



“Seeing” Gravity In Real Time insideHPC.com Survey
November 2016

92%
believe AI will impact their work

93%
using deep learning seeing positive results

TRANSFORMING RESEARCH

Accelerating Drug Discovery



Difference in Workflow

Input
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Designed 
Features

Output

Classic Machine Learning [ 1990 : now ]
Examples [ Regression and SVMs ]

Model / 
Mapping

Example [ Conv Net ]

Input
Simple 

Features
Output

Deep/End-to-End Learning [ 2012 : now ]

Model/ 
Mapping

Complex 
Features



Traditional Workflow

Input
Hand 

Designed 
Features

Output

Classic Machine Learning [ 1990 : now ]
Examples [ Regression and SVMs ]

Model / 
Mapping

Challenge in Slack channel: How would you describe this 
image to someone (or something) blind?

Difficult: From it’s raw pixels.
Medium: From geometric primitives (lines, curves, colors)
Easy: Using any words that you may know



Deep Learning Workflow

Example [ Conv Net ]

Input
Simple 

Features
Output

Deep/End-to-End Learning [ 2012 : now ]

Model/ 
Mapping

Complex 
Features

Experience: Trust Neural Network to learn features and model by providing 
inputs and outputs.

Key Skill: Experience (data) creation
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INPUT TO OUTPUT
Louie or Not Louie?

 1 = Louie
0= Not Louie
.85 = 85% confident Louie
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INPUT TO OUTPUT
Louie or Not Louie?

 

Yes, this beagle is Louie!

1 = Louie
0= Not Louie
.85 = 85% confident Louie
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No, not Louie!

INPUT TO OUTPUT
Louie or Not Louie?

 1 = Louie
0= Not Louie
.85 = 85% confident Louie
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No, not Louie!

INPUT TO OUTPUT
Louie or Not Louie?

 1 = Louie
0= Not Louie
.85 = 85% confident Louie
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Yup, that’s Louie!

INPUT TO OUTPUT
Louie or Not Louie?

 1 = Louie
0= Not Louie
.85 = 85% confident Louie
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Yea, that’s Louie!

INPUT TO OUTPUT
Louie or Not Louie?

 1 = Louie
0= Not Louie
.85 = 85% confident Louie
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Yes! Another epoch?

INPUT TO OUTPUT
Louie or Not Louie?

 1 = Louie
0= Not Louie
.85 = 85% confident Louie



HOW IT WORKS



HOW IT WORKS



HOW IT WORKS



HOW IT WORKS
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Training a network with data
Lab
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HANDWRITTEN DIGIT RECOGNITION
HELLO WORLD of machine learning
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WHAT THIS LAB IS

• An introduction to: 
• Deep Learning
• Workflow of training a network 
• Understanding the results

• Hands-on exercises using DIGITS for computer vision and 
classification
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NVIDIA’S DIGITS
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Process Data Configure DNN VisualizationMonitor Progress

Interactive Deep Learning GPU Training System

NVIDIA DIGITS
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WHAT THIS LAB IS NOT

• Intro to machine learning from first principles

• Rigorous mathematical formalism of neural networks

• Survey of all the features and options of tools and frameworks
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ASSUMPTIONS

• No background in Deep Learning needed

• Understand how to: 

• Navigate a web browser 

• Download files

• Locate files in file managers
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LAB OVERVIEW
• Learn about the workflow of Deep Learning

• Load data
• Expose a network to data
• Evaluate model results
• Try different techniques to improve initial results
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LAUNCHING THE LAB
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NAVIGATING TO QWIKLABS

1. Navigate to: 
https://nvlabs.qwiklab.com

2. Login or create a new 
account

https://nvlabs.qwiklab.com/
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ACCESSING LAB ENVIRONMENT

3. Select the event 
specific 
In-Session Class 
in the upper left

4. Click the “Image 
Classification 
with DIGITS” 
Class from the 
list
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LAUNCHING THE LAB ENVIRONMENT
5. Click on the Select 

button to launch the 
lab environment

• After a short 
wait, lab 
Connection 
information will 
be shown

• Please ask Lab 
Assistants for 
help!
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LAUNCHING THE LAB ENVIRONMENT

6. Click on the Start 
Lab button
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LAUNCHING THE LAB ENVIRONMENT

You should see that the 
lab environment is 
“launching” towards the 
upper-right corner
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CONNECTING TO THE LAB ENVIRONMENT

7. Click on “here” to 
access your lab 
environment / 
Jupyter notebook
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CONNECTING TO THE LAB ENVIRONMENT

You should see your 
“Image Classification 
with DIGITS” Jupyter 
notebook
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JUPYTER NOTEBOOK

1. Place 
your 
cursor in 
the code

2. Click the 
“run cell” 
button

3. Confirm you 
receive the 
same result
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STARTING DIGITS

Instruction in 
Jupyter notebook 
will link you to 
DIGITS
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ACCESSING DIGITS

• Will be prompted to 
enter a username to 
access DIGITS 

• Can enter any 
username

• Use lower case 
letters
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Evaluating Performance
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Loss function
(Validation)

Loss function
(Training)

Accuracy
obtained from 

validation dataset

EVALUATE THE MODEL
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DEEP LEARNING APPROACH - TRAINING

Input

Process
• Forward propagation 

yields an inferred label 
for each training image

• Loss function used to 
calculate difference 
between known label 
and predicted label for 
each image

• Weights are adjusted 
during backward 
propagation

• Repeat the process

Forward propagation

Backward propagation
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Next Challenges

•Increase accuracy and 
confidence with similar data

•Generalize performance to 
more diverse data

Ideas?
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Lab Review
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Defaults Training+Data

1 : 99.90 % 0 : 93.11 %

2 : 69.03 % 2 : 87.23 %

8 : 71.37 % 8 : 71.60 %

8 : 85.07 % 8 : 79.72 %

0 : 99.00 % 0 : 95.82 %

8 : 99.69 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 %

More data
Full dataset ( 10 epochs )

• 99% of accuracy 
achieved

• No improvements in 
recognizing 
real-world images
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SMALL DATASET FULL DATASET +INVERTED

1 : 99.90 % 0 : 93.11 % 1 : 90.84 %

2 : 69.03 % 2 : 87.23 % 2 : 89.44 %

8 : 71.37 % 8 : 71.60 % 3 : 100.0 %

8 : 85.07 % 8 : 79.72 % 4 : 100.0 %

0 : 99.00 % 0 : 95.82 % 7 : 82.84 %

8 : 99.69 % 8 : 100.0 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 % 2 : 96.27 %

DATA AUGMENTATION
Adding inverted images ( 10 epochs )
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DATA AUGMENTATION
Adding Inverted Images
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SMALL DATASET FULL DATASET +INVERTED ADDING LAYER

1 : 99.90 % 0 : 93.11 % 1 : 90.84 % 1 : 59.18 %

2 : 69.03 % 2 : 87.23 % 2 : 89.44 % 2 : 93.39 %

8 : 71.37 % 8 : 71.60 % 3 : 100.0 % 3 : 100.0 %

8 : 85.07 % 8 : 79.72 % 4 : 100.0 % 4 : 100.0 %

0 : 99.00 % 0 : 95.82 % 7 : 82.84 % 2 : 62.52 %

8 : 99.69 % 8 : 100.0 % 8 : 100.0 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 % 2 : 96.27 % 8 : 70.83 %

MODIFIED NETWORK
Adding filters and ReLU layer ( 10 epochs )
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MODIFY THE NETWORK
Necessary for less “solved” challenges.

layer {  
name: "pool1“
type: "Pooling“
…

}

layer {
name: "reluP1"
type: "ReLU"
bottom: "pool1"
top: "pool1"

}

layer {
name: "reluP1“

layer {
  name: "conv1"
  type: "Convolution"

...
convolution_param {
num_output: 75
...

layer {
name: "conv2"
type: "Convolution"
...
convolution_param {
num_output: 100
...
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Next Steps
• Experiment with Image Classification

• Different datasets

• Increase performance

• Learn to train existing networks with data for other challenges

• Learn about network construction

• Learn about how to create an image classifier with other frameworks

• Caffe/Keras

• Tensorflow

• Etc. 
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Appendix
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Activation functions

tanh Sigmoid ReLU
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CNN - Example

 Each pixel is a neuron
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CNN - Example - 1st Feature Map

 3x3 Kernel, 1 Stride, weights constant per kernel
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CNN - Example - 1st Feature Map

 3x3 Kernel, 1 Stride, weights constant per kernel
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CNN - Example - 1st Feature Map

 3x3 Kernel, 1 Stride, weights constant per kernel
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CNN - Example - 1st Feature Map

 3x3 Kernel, 1 Stride, weights constant per kernel
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CNN - Example - 1st Feature Map

 3x3 Kernel, 1 Stride, weights constant per kernel
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CNN - Example - 1st Feature Map

 3x3 Kernel, 1 Stride, weights constant per kernel
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CNN - Example - 2nd Feature Map
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CNN - Example - 2nd Feature Map
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CNN - Example - 2nd Feature Map
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CNN - Example - 2nd Feature Map
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CNN - Example - 2nd Feature Map
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CNN - Example - 2nd Feature Map



67 

CNN - Example - 
Consecutive Convolutions

• Each filter in above layer performs convolution on all filters in previous 
layer, same for colour channels.
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CNN - Example - 
Consecutive Convolutions

•Each filter in above layer performs convolution on all filters in 
previous layer, same for colour channels.
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CNN - Example - 
Consecutive Convolutions

•Each filter in above layer performs convolution on all filters in 
previous layer, same for colour channels.



70 

CNN - Example - 
Consecutive Convolutions

•Each filter in above layer performs convolution on all filters in 
previous layer, same for colour channels.
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Pooling

•Pooling performs subsampling and reduces network size
•Example of MAX pooling (selecting the maximum value)

[http://cs231n.github.io/]
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www.nvidia.com/dli

Instructor:


