
Migrating 4M of C++ to run in multithreaded
environment

Christos Anastopoulos
Royal Society University Research Fellow

2

Where these 4M C++ lines are used ?

In an experiment like Atlas we reconstruct events.

3

Broadly speaking, the purpose of this software is to convert the signals in the
ATLAS sub-detectors to “particle candidates”.
These then form the input for all ATLAS analyses and papers.

Where these 4M C++ lines are used ?

4

Where these 4M C++ lines are used ?

“Essential” complexity arises from the actual problem we
try to solve.
Trying to do non trivial “Physics” with a complex detector

“Accidental” complexity arises from the tools, procedures
we use to develop and test our code.

Most of the talk will be more on managing “accidental”
complexity

5

On the 17th December 2018, ATLAS updated the Athena repository to make it public and
open-source.

The ATLAS repository

https://gitlab.cern.ch/atlas/athena

https://gitlab.cern.ch/atlas/athena

6

C++ is the main language
Python is next

Some further info
- Main compiler for production gcc, but we also build with clang.
- Main platform x86-64, we started exploring aarch64
- Build System CMake
- Static checkers include flake8 (python), gcc plugins, clang-tidy, cppcheck, coverity (in-progress)
- Leak checkers/profilers : Valgrind, Callgrind, Vtune …
- Issue/feature tracking via JIRA
- C++ style guide : https://atlas-computing.web.cern.ch/atlas-computing/projects/qa/draft_guidelines.html

7

Time frame

Stable releases used for analysing data, correspond to a particular branch, only bug fixes
allowed

The master branch is where we develop new code. We produce “nightly” builds (gcc, clang
etc) each day.

The milestone for this talk is the LHC Run-3 data taking period.
Starts in ~ 3 months ….

All ATLAS papers to be published in the next few years will use the software discussed.

8

Multi threading

Multi-Process (MP) what we were doing,
Optimal usage of the currently available resources meant we had to migrate to Multi-Threading

Fit more “compute” in given resources.
Plots showing current status
Taken from here.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2021-002/

9

The problem

Migrate a code base mainly developed with “serial” running in mind
Written mainly pre the C++ “threading” model …

While at the same time ensuring that the “physics” related output is correct and even improved.

Current estimate is that we touched ~ 1.5 M lines of C++ code …

10

Things that helped

Unit tests : Test the output/behaviour of one module on some “mocked” input.

Merge request code reviews

Integration Tests : Run a few actual events through the full reconstruction chain. Check if
number of muons, electrons etc change.

All part of automated “pipeline”. Seems trivial but a huge game changer.

11

Things that helped

On top of the merge request / Continuous Integration (CI) pipeline.

ATLAS Runtime Testing (ART) : 100s tests running for each “nightly” release (24h turnaround)

Example test output for 1 vs 8 threads:

Example test distribution that are used for “physics” using high stats sample.

12

Things that helped

Constant monitoring or cpu/memory metrics ~ 24 h turnaround

13

Things that helped

The final step “Physics” validation, collaboration wide effort where data produced by the
software is used in realistic analysis scenarios.

It is not “continuous” but represents “sign off” points during the development cycle.

On a weekly basis reconstruct a few million of events from different run periods.
Catches rare issues on taking unexpected paths
- Floating point exceptions
- Dangling pointers
- Rare race conditions.

14

Things that helped

I am pretty convinced that the effort would have failed without this new machinery we started
putting in place ~ 2016.

Code reviews, CI pipeline has been an almost “magic” transformation on the way we develop
code.

Coupled with additional testing meant that we had a concrete view of where we are,
the issues we were facing, the effect of any solution.

What follows is a couple of examples from personal experience.

15

Irreproducible “Muons”

The issue as described in Draft MR (closed) from our software co-ordinator 1 vs 8 threads

In lay terms :
The fitter used for muon trajectories was giving different outputs > 1 threads.
Telltale mark of MT hostile code.

https://gitlab.cern.ch/atlas/athena/-/merge_requests/39084

16

Irreproducible “Muons”
I would probably not have even attempted this without our testing. As I would be effectively
touching a critical piece of code “blind”. MR

In less than a week we knew the answer.

https://gitlab.cern.ch/atlas/athena/-/merge_requests/39573

17

“Trivial” changes to interfaces

CI more or less tells if you forgot
something.

Cases where one needs to touch an interface. Many clients. Example MR

https://gitlab.cern.ch/atlas/athena/-/merge_requests/49663

18

The rise of the “robots”?
We consider using more clang-tidy in out work flow.
Example of using modernize-replace-auto-ptr to enforce out “style-guide”

19

Conclusions

The ATLAS collaboration is at the end of long development cycle for its Run-3 software

This included a significant technical component of migrating to Multi-threading

Personally, not sure I could even contemplate how we would have managed this without
rigorous development and testing procedures.

For the Physics you will need to keep an eye for upcoming Run-3 results.

20

τέλος

21

Backup

22

23

24

