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MACHINE LEARNING
EVERYWHERE
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MACHINE LEARNING
EVERYWHERE

So much that it is starting to not make sense anymore... like when you say
a word 50 times in a row
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For good or for bad it is everywhere:
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For good or for bad it is everywhere:

Deployed in healthcare and warfare

n the creative industry (from music to books)
Reading CVs and judging your creditworthiness

Making us more Instagram worthy
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The big players:

e & Apple

e f Facebook
e G Google

o |BM

e |ntel

e BB Microsoft
e Nvidia

e Open Al

o W Twitter
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MACHINE LEARNING GENERALISED IN TWO WORKFLOWS

e Model development (R&D)
e Model serving (production for customers consumption)
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WHAT ARE THESE GIANTS’ ISSUES?
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WHAT ARE THESE GIANTS’ ISSUES?

Mainly scale...in multiple areas
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If we have a small team we have a smaller number of issues... right?
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If we have a small team we have a smaller number of issues... right?
Small number of models to maintain

People have the knowledge in their heads

They have their own methods to track progress
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THAT IS THE SMALL TEAM PERFORMANCE FALLACY

We still need processes and best practices in place... so let me get back at
this later
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AS THE TEAM DEMAND GROWS THE PROBLEMS GROW

W Increased complexity of data flow
W Larger number of workflows
W Managing complexity of flows and scheduling becomes a nightmare

W Resource allocation has to be on point
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SERVING MODELS BECOMES HARDER
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Machine Learning Model Development
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HOW DO THEY SERVE
MILLIONS OF
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CUSTOMERS ACROSS
THE GLOBE?
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Three main players:

Infrastructure / resources
Processes

People
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Analytics & Machine Learning
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INFRASTRUCTURE AS A CODE
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EVERYTHING AS A CODE

e Version control

e |Less ambiguity on the configurations
e Shorter turnarounds

e Deterministic environments
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PROCESSES
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DATA AND CODE AS FIRST CLASS CITIZENS
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ML/AI

\/

o Data

e Accelerators

e Train step

o Refitting

Transform data
H20.ai Driverless AL
Feature extraction
Datalogue
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PII extraction

H,0 0
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TensorFlow
PyTorch
Caffe
MXNet

+

PYTSRCH

TF Serving
Clipper
Flask
ONNX

€ ONNX

Inference @ the edge
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PEOPLE

e Data scientist
e Data engineer
e ML Engineer
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WHAT DOES ACADEMIA HAVE TO
OFFER?

& Much more than you think
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PEOPLE

e Researchers
e Research software engineers
e Librarians
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RESOURCES AND INFRASTRUCTURE

We still need to figure this out... it is pretty much an ad-hoc case
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PROCESSES

e Scientific rigour
e Peer review
e Data management
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WHICH AREAS COULD BENEFIT FROM ACADEMIC
COLLABORATIONS?
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META-LEARNING

Humans learn across tasks (learn from experience)

>
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If prior tasks are similar then we can carry prior knowledge

1 t 3 training data
I inductive bias
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AlphaGo uses some sort of meta-learning
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ALGORITHMIC FAIRNESS

It has become increasingly important to ensure that models are making
justified calls that are free from unintended bias.
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ALGORITHMIC FAIRNESS

It has become increasingly important to ensure that models are making
justified calls that are free from unintended bias.

The one way to make progress is through interdisciplinary collaboration
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TOWARDS MODEL EXPLAINABILITY

Address the trade-off

petween performance and interpretability
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REINFORCEMENT LEARNING DEADLY TRIAD

Following nature's paradigms RL agents receive awards and then learn to
maximise success by performing optimal actions.
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How to keep an algorithm learning if there are far too many potential
variables or outcomes to be evaluated without being fed ridiculous
amounts of data.
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IN BRIEF

Focus on the 3 pillars:

People

nfrastructure

Processes
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THANK YOU

£2 ixek
N tania.allard@microsoft.com
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